omega-conotoxin GVIA alters gating charge movement of N-type (CaV2.2) calcium channels.

نویسندگان

  • Viktor Yarotskyy
  • Keith S Elmslie
چکیده

omega-conotoxin GVIA (omegaCTX) is a specific blocker of N-type calcium (CaV2.2) channels that inhibits neuropathic pain. While the toxin appears to be an open channel blocker, we show that N-channel gating charge movement is modulated. Gating currents were recorded from N-channels expressed along with beta2a and alpha2delta subunits in HEK293 cells in external solutions containing either lanthanum and magnesium (La-Mg) or 5 mM Ca2+ plus omegaCTX (omegaCTX-Ca). A comparison showed that omegaCTX induced a 10-mV right shift in the gating charge versus voltage (Q-V) relationship, smaller off-gating current time constant (tau Q(Off)), a lower tau Q(Off) voltage dependence, and smaller on-gating current (Q(On)) tau. We also examined gating current in La-Mg plus omegaCTX and found no significant difference from that in omegaCTX-Ca; this demonstrates that the modulation was induced by the toxin. A model with strongly reduced open-state occupancy reproduced the omegaCTX effect on gating current and showed that the gating modulation alone would inhibit N-current by 50%. This mechanism of N-channel inhibition could be exploited to develop novel analgesics that induce only a partial block of N-current, which may limit some of the side effects associated with the toxin analgesic currently approved for human use (i.e., Prialt).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

-Conotoxin GVIA Alters Gating Charge Movement of N-Type (CaV2.2) Calcium Channels

Yarotskyy V, Elmslie KS. -conotoxin GVIA alters gating charge movement of N-type (CaV2.2) calcium channels. J Neurophysiol 101: 332–340, 2009. First published October 29, 2008; doi:10.1152/jn.91064.2008. -conotoxin GVIA ( CTX) is a specific blocker of N-type calcium (CaV2.2) channels that inhibits neuropathic pain. While the toxin appears to be an open channel blocker, we show that N-channel ga...

متن کامل

Effects of Cav2.2 inhibitor on hippocampal spatial short- term cognition

Neuronal voltage gated calcium channels (VGCCs) including Cav2.1 and Cav2.2 channels mediate the presynaptic machinery for vesicular release of neurotransmitters. However, the role of different VGCCs in the neural circuits underlying spatial short-term memory has not been studied. Although it has been reported that spatial cognition requires Cav2.1-regulated signaling in the hippocampus, Cav2.2...

متن کامل

Apamin-sensitive small conductance calcium-activated potassium channels, through their selective coupling to voltage-gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat subthalamic nucleus neurons in vitro.

Distinct activity patterns in subthalamic nucleus (STN) neurons are observed during normal voluntary movement and abnormal movement in Parkinson's disease (PD). To determine how such patterns of activity are regulated by small conductance potassium (SK)/calcium-activated potassium (KCa) channels and voltage-gated calcium (Cav) channels, STN neurons were recorded in the perforated patch configur...

متن کامل

Interactions among Toxins That Inhibit N-type and P-type Calcium Channels

A number of peptide toxins from venoms of spiders and cone snails are high affinity ligands for voltage-gated calcium channels and are useful tools for studying calcium channel function and structure. Using whole-cell recordings from rat sympathetic ganglion and cerebellar Purkinje neurons, we studied toxins that target neuronal N-type (Ca(V)2.2) and P-type (Ca(V)2.1) calcium channels. We asked...

متن کامل

Single-channel properties of four calcium channel types in rat motoneurons.

Previous studies have demonstrated multiple components of whole-cell calcium currents in hypoglossal motoneurons (HMs); HMs possess a low-voltage-activated (LVA) current and three types of high-voltage-activated (HVA) calcium currents based on sensitivity to omega-Aga IVA, omega-Conotoxin GVIA (omega-CgTx) and dihydropyridine analogs (DHPs). In the present study, we recorded single-calcium chan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 101 1  شماره 

صفحات  -

تاریخ انتشار 2009